The University of Pittsburgh will use an award from the National Institute for Occupational Safety & Health (NIOSH) to measure roughness on the smallest scales ever measured. They will use those measurements to build a model of friction performance with the long-term goal of innovating high-friction flooring to prevent occupational slips and falls.

“More than 140,000 workers suffer from fall-related injuries each year, and about half of them result from a slip,” said Kurt Beschorner, associate professor of bioengineering, University of Pittsburg, Swanson School of Engineering. “Designing specific, high-friction flooring could mitigate these injuries, but we need a better understanding of the flooring factors that lead to friction.”

“To date, despite research worldwide, no one has yet reliably connected flooring topography to friction measurements for flooring,” said Eric Astrachan, executive director of the Tile Council of North America. “This is the ‘Holy Grail’ for flooring design, where an understanding of measurable topography parameters—parameters that also affect aesthetics and cleanability—can be used in the design phase to engineer flooring slip resistance.” 

Slips and falls in the workplace have an annual cost of $10 billion in workers’ compensation. This work is expected to lead to improved high-friction flooring that can help prevent these accidents and save both companies and employees the inconvenience of these injuries.

“Dr. Beschorner and Dr. [Tevis] Jacobs at the University of Pittsburgh are uniquely qualified to conduct this research that can directly impact worker and consumer safety, a key priority of the Tile Council of North America and our member companies,” Astrachan said. “It is our pleasure to facilitate this research through direct connections to the TCNA Product Performance Testing Laboratory and to the research and production departments of our members.”

For the full press release, click here.